Previsões para a produção de leite sob instabilidade pluviométrica no Ceará no período de 1974 a 2019
Forecasts for milk production under rainfall instability in Ceará on the period of 1974 to 2019.
Elizama Cavalcante de Paiva; José de Jesus Sousa Lemos; Robério Telmo Campos
Resumo
Palavras-chave
Abstract
Abstract: The livestock sector is strongly influenced by weather phenomena and rainfall instability becomes an obstacle to productive capacity, especially in municipalities belonging to the semiarid region. Producers plan and organize their production based on past experiences, and from these experiences, they create their expectations for the future. This work evaluated how exogenous variables (rainfall and prices) interfere in the forecasts of dairy farmers in Ceará in the period from 1974 to 2019. Projections are generated about the endogenous variables over which dairy farmers have decision-making power (herd and productivity). Although they do not have decision-making power over the average price, which is exogenously determined by the market, the study estimated the forms of projections for this variable as well. It was also estimated how rainfall likely affects the predictions of variables associated with milk production. The ARIMA method proposed by Box and Jenkins (1976) was used to capture the behavior of variables based on their historical series (1974-2019). The results confirmed the indirect impact of rainfall and prices on the endogenous decision variables. The trajectories of production expectations and projected values, as well as the statistical tests performed, indicated the robustness of the adjustments made in the survey.
Keywords
Referências
Box, G. E. P., & Jenkins, G. M. (1976).
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015).
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2011). Instrução Normativa, n° 62, de 29 de dezembro de 2011. Regulamenta a produção, identidade, qualidade, coleta e transporte do leite tipo A, leite cru refrigerado e leite pasteurizado.
Brasil. Ministério da Integração Nacional. Conselho Deliberativo da Superintendência do Desenvolvimento do Nordeste – CONDEL/SUDENE. (2017). Resolução nº 115, de 23 de novembro de 2017.
Camelo, H. N., Lucio, P. S., Leal Junior, J. B. V., & Carvalho, P. C. M. (2018). Modeling Box - Jenkins applied a prediction of wind speed in the regions of the Brazilian northeast for the fins of wind generation.
Clement, E. P. (2014). Using Normalized Bayesian Information Criterion (Bic) to Improve Box - Jenkins Model Building.
Cochrane, J. H. (1997).
Deschênes, O., & Greenstone, M. (2007). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather.
Fama, E. (1969). Efficient Capital Markets: a review of theory and empirical work.
Folhes, M. T., & Donald, N. (2007). Previsões tradicionais de tempo e clima no Ceará: o conhecimento popular a serviço da ciência.
Galvão Júnior, J. G. B., Guilermino, M. M., Medeiros, H. R., Novais, L. P., & Rangel, A. H. N. (2015). Perfil dos sistemas de produção de leite bovino no Siridó Potiguar.
Garcia, C. H. (1989).
Gomes, F. P. (1985).
Gonçalves, L. C., Borges, I., & Ferreira, P. D. S. (2015).
Greene, W. H. (2012).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2006).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2017).
Instituto Brasileiro de Geografia e Estatística – IBGE. (2019).
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root.
Lemos, J. J. S. (2020). Vulnerabilidades induzidas no semiárido brasileiro.
Lemos, J. J. S., & Bezerra, F. N. R. (2019). Interferência da instabilidade pluviométrica na previsão da produção de grãos no semiárido do Ceará.
Li, S., Yang, X., & Li, R. (2019). Forecasting coal consumption in India by 2030: using linear modified linear (MGM-ARIMA) and linear modified nonlinear (BP-ARIMA) combined models.
Makridakis, S., Wheelwright, S., & Hyndman, R. J. (1998).
Morretin, P. A., & Toloi, C. M. C. (1987).
Paiva, E. (2018).
Reis Filho, R. J. C., & Carvalho, A. P. (2009). P
Silva, F. B. R., Riché, G. R., Tonneau, J. P., Souza Neto, N. C., Brito, L. T. L., Correia, R. C., Cavalcanti, A. C., Silva, F. H. B. B., Silva, A. B., & Araújo Filho, J. C. (1993).
Sorensen, A. T. (2000). Equilibrium price dispersion in retail markets for prescription drugs.
Thornton, P. K., van de Steeg, J., Notenbaert, A., & Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know.
Wang, Q., Li, S., Li, R., & Ma, M. (2018). Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model.
Wooldridge, J. M. (2013).
Ximenes, L. F. (2013). Efeitos da ocorrência de secas sobre indicadores agropecuários do Estado do Ceará.
Ximenes, L. J. F. (2009).
Submetido em:
21/05/2021
Aceito em:
24/08/2020