Revista de Economia e Sociologia Rural
http://www.resr.periodikos.com.br/article/doi/10.1590/1806-9479.2022.270959
Revista de Economia e Sociologia Rural
ARTICLE

System proximity index ratio (SPIR) accuracy in forecasting the sustainability of crop-livestock farming systems in Indonesian paddy fields

Precisión de la relación del índice de proximidad del sistema (SPIR) en el pronóstico de la sostenibilidad de los sistemas agrícolas de cultivos y ganadería en los arrozales de Indonesia

Dedi Sugandi; Neneng Ratna Purnamasari; Agus Nurawan; Nana Sutrisna; Yanto Surdianto

Downloads: 0
Views: 194

Abstract

The crop-livestock farming system in paddy fields is integrated between rice crops and beef cattle (rice-beef cattle CLFS). Rice plants will produce straw and rice bran that can be used for animal feed, and livestock will produce compost/manure that can be used for rice nutrition. Some other benefits of implementing CLFS are increasing crop productivity, increasing the value of farmers' income, farming cost efficiency, and preserving the environment. The probability of the sustainability of CLFS application in paddy fields can be measured by calculating the system proximity index ratio using the SPIR formula. This research aims to demonstrate the accuracy of the SPIR formula in predicting the probability of CLFS sustainability in paddy fields. This study compares CLFS programs in several regions in Indonesia. It uses an independent sample t-test analysis tool with one-way rejection criteria to see the difference in SPIR scores on sustainable and unsustainable CLFS. The results showed that the SPIR formula could predict the sustainability of the CLFS program in Indonesia. However, further studies are needed to prove its ability to predict CLFS sustainability in other parts of the world.

Keywords

integration, SPIR, sustainability, crop, livestock

Resumo

Resumen: El sistema agrícola en cultivos de arroz es un sistema integrado entre cultivos de arroz y ganado vacuno (arroz-vacuno CLFS). Las plantas de arroz producirán paja y salvado de arroz que se pueden usar como alimento para animales, y el ganado producirá compost/estiércol que se puede usar para la nutrición del arroz. Algunos de los otros beneficios de implementar CLFS son el aumento de la productividad de los cultivos, el aumento del valor de los ingresos de los agricultores, la eficiencia de los costos agrícolas y la preservación del medio ambiente. La probabilidad de sostenibilidad de la aplicación de CLFS en los campos de arroz se puede medir calculando la relación del índice de proximidad del sistema utilizando la fórmula SPIR. El objetivo de esta investigación es demostrar la precisión de la fórmula SPIR para predecir la probabilidad de sostenibilidad de CLFS en arrozales. Este estudio compara los programas CLFS en varias regiones de Indonesia y utiliza una herramienta de análisis de prueba t de muestra independiente con criterios de rechazo unidireccionales para ver la diferencia en las puntuaciones SPIR en CLFS sostenible e insostenible. Los resultados mostraron que la fórmula SPIR puede predecir la sostenibilidad del programa CLFS en Indonesia. Sin embargo, se necesitan más estudios para demostrar su capacidad para predecir la sostenibilidad de CLFS en otras partes del mundo.
 

Palavras-chave

integración, SPIR, sostenibilidad, cultivo, ganadería

Referências

Altieri, M. A. (2018). Agroecology: the science of sustainable agriculture (2nd ed.). Boca Raton: CRC Press.

Arisa, Amruddin, & Molla, S. (2021). Adoption of farmers’ innovation in the development of onion business in Kayu Loe village, Bantaeng District, Bantaeng Regency. Agripreneur: Jurnal Pertanian Agribisnis, 11(1), 34-42.

Badan Pusat Statistik. (2019). Tanaman pangan. Retrieved in 2023, January 8, from www.bps.go.id/subject/53/tanaman-pangan.html#subjekViewTab3

Bhattacharyya, P., Chakraborty, K., Molla, K. A., Poonam, A., Bhaduri, D., Sah, R. P., Paul, A., Hanjagi, P. S., Basana-Gowda, G., & Swain, P. (2022). Tolerance mechanism of rice in submergence and stagnant flooding stress. In Climate resilient technologies for rice based production systems in Eastern India. Odisha: ICAR-National Rice Research Institute.

Brázdik, F. (2006). Non-parametric analysis of technical efficiency: factors affecting efficiency of West Java rice farms. SSRN. http://dx.doi.org/10.2139/ssrn.1148203.

Castillo, J., Kirk, G. J. D., Rivero, M. J., Dobermann, A., & Haefele, S. M. (2021). The nitrogen economy of rice-livestock systems in Uruguay. Global Food Security, 30, 100566. http://dx.doi.org/10.1016/j.gfs.2021.100566

Devendra, C. (1993). Sustainable animal production from small farm systems in South East ASIA (FAO Animal Production and Health Paper). FAO.

Ditjen Hortikultura. (2020). Sukun Sumber Karbohidrat Pengganti Beras. Jakarta.

Fanani, Z. (1998). Optimasi Usahatani Terpadu Tanaman dengan Sapi Potong di Daerah Lahan Kering Kecamatan Kalipare Malang Selatan. Universitas Padjadjaran.

Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The roles of livestock in developing countries. Animal, 7(1), 3-18. http://dx.doi.org/10.1017/S1751731112001954

Homann-Kee Tui, S., Valbuena, D., Masikati, P., Descheemaeker, K., Nyamangara, J., Claessens, L., Erenstein, O., van Rooyen, A., & Nkomboni, D. (2015). Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe. Agricultural Systems, 134, 48-60. http://dx.doi.org/10.1016/j.agsy.2014.06.009

Indonesia Corporate Secretary Association – ICSA. (2020). Indonesian Statistics 2020. Badan Pusat Statistik.

Mebratu, D. (1998). Sustainability and sustainable development: historical and conceptual review. Environmental Impact Assessment Review, 18(6), 493-520. http://dx.doi.org/10.1016/S0195-9255(98)00019-5

Mensah, J. (2019). Sustainable development: Meaning, history, principles, pillars, and implications for human action: literature review. Cogent Social Sciences, 5(1), 1653531. http://dx.doi.org/10.1080/23311886.2019.1653531

Mukhlis, Noer, M., Nofialdi, & Mahdi. (2018). The integrated farming system of crop and livestock: a review of rice and cattle integration farming. International Journal of Sciences, Basic and Applied Research, 42(3), 68-82. Retrieved in 2023, January 8, from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/9477/4194

Mwangi, M., & Kariuki, S. (2015). Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. Journal of Economics and Sustainable Development, 6(5), 208-216.

Naveed, M., Moldrup, P., Vogel, H., Lamandé, M., Wildenschild, D., Tuller, M., & de Jonge, L. W. (2014). Impact of long-term fertilization practice on soil structure evolution. Geoderma, 217-218, 181-189. http://dx.doi.org/10.1016/j.geoderma.2013.12.001

Pingali, P. L., & Rosegrant, M. W. (1994). Confronting the environmental consequences of the green revolution in Asia (pp. 1-33). AgEcon Search Research in Agriculture and Applied Economics.

Prasada, I. Y., Dhamira, A., & Nugroho, A. D. (2022). Agricultural land availability and farmer’s income in Java Island, Indonesia, 1990-2018. Regional Statistics, 12(3), 85-103. http://dx.doi.org/10.15196/RS120304

Prasetyo, T., Setiani, C., & Kartaatmaja. (2002). Integrasi tanaman-ternak pada sistem usahatani di lahan irigasi. Wartazoa, Buletin Ilmu Peternakan Indonesia, 12(1), 28-34.

Rahmawati, T. N., & Rozaki, Z. (2021). Sustainable value of rice farm based on economic efficiency in Yogyakarta, Indonesia. Open Agriculture, 6(1), 563-572. http://dx.doi.org/10.1515/opag-2021-0039

Ramana, D. B. V., Selim, A. S. M., & Tedeschi, L. O. (2018). The necessity to develop a comprehensive feed library for livestock production in South Asia. Current Science, 115(7), 1270-1275. http://dx.doi.org/10.18520/cs/v115/i7/1270-1275

Rangnekar, D. V. (2006). Livestock in the livelihood of the underprivileged communities in India: a review. International Livestock Research Institute.

Ryschawy, J., Choisis, N., Choisis, J. P., Joannon, A., & Gibon, A. (2012). Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal, 6(10), 1722-1730. http://dx.doi.org/10.1017/S1751731112000675

Sawit, H. (2000). Harga Dasar Gabah Tahun 2001 dan Subsidi: Analisa Musiman. In Seminar Rutin Pusat Penelitian Sosial Ekonomi Pertanian.

Shrivastava, P. (1995). Environmental technologies and competitive advantage. Strategic Management Journal, 16(S1), 183-200. http://dx.doi.org/10.1002/smj.4250160923

Singarimbun, M., & Pasandaran, E. (1989). Metode penelitian sosial. Jakarta: LP3ES.

Souvannachith, T., Putra, D. P. E., & Hendrayana, H. (2017). Assessment of groundwater contamination hazard by nitrate in Samas Area, Bantul District, Yogyakarta, Indonesia. Journal of Applied Geology, 2(1), 36-47. http://dx.doi.org/10.22146/jag.30256

Sraïri, M. T., & Ghabiyel, Y. (2017). Coping with the work constraints in crop-livestock farming systems. Annals of Agricultural Science, 62(1), 23-32. http://dx.doi.org/10.1016/j.aoas.2017.01.001

Struik, P. C., & Kuyper, T. W. (2017). Sustainable intensification in agriculture: the richer shade of green: a review. Agronomy for Sustainable Development, 37(5), 39. http://dx.doi.org/10.1007/s13593-017-0445-7

Sugandi, D. (2010). Kajian Ekonomi Keberlanjutan Sistem Integrasi Tanaman padi dengan Ternak Sapii pada Lahan Sawah. Universitas Padjadjaran.

Sugandi, D. (2016). Analisis keberlanjutan sistem integrasi tanaman padi dengn ternak sapi pada lahan sawah. In Prosiding Seminar Nasional.

Tumbo, S. D., Mwalukasa, N., Fue, K. G., Mlozi, M. R. S., Haug, R., & Sanga, C. A. (2018). Exploring information seeking behaviour of farmers’ in information related to climate change adaptation through ICT (CHAI). International Review of Research in Open and Distance Learning, 19(3), 299-319. http://dx.doi.org/10.19173/irrodl.v19i3.3229

Turmuktini, T., Kantikowati, E., Natalie, B., Setiawati, M., Yuwariah, Y., Joy, B., & Simarmata, T. (2012). Restoring the health of paddy soil by using straw compost and biofertilizers to increase fertilizer efficiency and rice production with sobari (system of organic based aerobic rice intensification) technology. Asian Journal of Agriculture and Rural Development, 2(4), 519-526.

Uddin, M. N., Bokelmann, W., & Entsminger, J. S. (2014). Factors affecting farmers’ adaptation strategies to environmental degradation and climate change effects: a farm level study in Bangladesh. Climate, 2(4), 223-241. http://dx.doi.org/10.3390/cli2040223

Wan, N. F., Li, S. X., Li, T., Cavalieri, A., Weiner, J., Zheng, X. Q., Ji, X. Y., Zhang, J. Q., Zhang, H. L., Zhang, H., Bai, N. L., Chen, Y. J., Zhang, H. Y., Tao, X., Zhang, H.-L., Lv, W.-G., Jiang, J.-X., & Li, B. (2019). Ecological intensification of rice production through rice-fish co-culture. Journal of Cleaner Production, 234, 1002-1012. http://dx.doi.org/10.1016/j.jclepro.2019.06.238

Wani, S. P., Dixin, Y., Li, Z., Dar, W. D., & Chander, G. (2012). Enhancing agricultural productivity and rural incomes through sustainable use of natural resources in the Semi-Arid Tropics. Journal of the Science of Food and Agriculture, 92(5), 1054-1063. http://dx.doi.org/10.1002/jsfa.4721

Zhou, T., Koomen, E., & Ke, X. (2020). Determinants of farmland abandonment on the urban–rural Fringe. Environmental Management, 65(3), 369-384. http://dx.doi.org/10.1007/s00267-020-01258-9
 


Submetido em:
08/01/2023

Aceito em:
17/07/2023

65381474a9539526eb4148b2 resr Articles
Links & Downloads

resr

Share this page
Page Sections