Revista de Economia e Sociologia Rural
http://www.resr.periodikos.com.br/article/doi/10.1590/1806-9479.2023.277511
Revista de Economia e Sociologia Rural
ARTIGO ORIGINAL

Análise do potencial de Angola para a instalação de centrais termoelétricas a biomassa vegetal1

Analysis of Angola's potential for the installation of biomass power plants

Oloiva Sousa; Maria Raquel Lucas; José Aranha

Downloads: 2
Views: 203

Resumo

O aumento da produção de energia elétrica com base em combustíveis fósseis conduz ao aumento de gases com efeito estufa e a originar conflitos devido ao aquecimento global. Por estes motivos, também é crescente o número de estudos relativos a fontes alternativas de energia sustentável. A biomassa florestal pode ser uma importante fonte de combustível para unidades produtoras de energia, como sejam as centrais termoelétricas. Vários estudos, em Portugal, demonstraram que a quantidade anual de resíduos agroflorestais pode constituir uma fonte alternativa de combustível para as centrais termoelétricas. Ainda que a produção agroflorestal e pecuária, em Angola, seja diferente da praticada em Portugal, a produção de resíduos agroflorestais e a forma de os aproveitar segue os mesmos princípios. O objetivo do presente trabalho é o de estimar, através do processamento de imagens do satélite MODIS, a disponibilidade em biomassa florestal e identificar locais com potencial para a instalação de centrais termoeléctricas a biomassa vegetal. O trabalho foi desenvolvido em ambiente de sistemas de informação geográfica e deteção remota. As imagens MODIS permitiram calcular o índice de vegetação NDVI e estimar a biomassa existente recorrendo a formulários anteriormente apresentados por outros autores. Através de técnicas de álgebra cartográfica, introduziram fatores condicionantes à instalação das centrais, como sejam a morfologia do terreno, a proximidade à rede viária e a proximidade a reservas naturais. Os resultados obtidos mostram que Angola possui um potencial em biomassa florestal que permite instalar até 17 centrais de 11 GWh-1, sendo que 12 se localizam próximo da atual rede elétrica de alta tensão ou em situação de ligação direta à rede. Destas 12, 4 estão próximas das atuais centrais elétricas hídricas, pelo que poderão funcionar em complemento de produção. Os resultados também mostram que as fazendas dedicadas à produção florestal se localizam próximo das zonas de ação das centrais e da rede ferroviária. Assim, os resíduos de exploração florestal que estas fazendas geram poderão ser comercializados como combustível para estas centrais. Também as fazendas dedicadas à produção agrária se localizam próximo das potenciais centrais, pelo que poderão usar a energia produzida e vender os seus resíduos vegetais como combustível.

Palavras-chave

Angola, biomassa florestal, energias alternativas, SIG, imagens de satélite

Abstract

Abstract: The increase in electricity production based on fuels fossil fuels leads to an increase in greenhouse gases and social conflicts due to global warming. For these reasons, the research on alternative sources of sustainable energy is also increasing. Forest biomass can be an important fuel source for energy producing, such as in thermoelectric power plants. Previous research in Portugal have demonstrated that the annual amount of agroforestry residues can be an alternative source of fuel for thermoelectric plants. Although agroforestry and livestock production in Angola is different from that practiced in Portugal, the production of agroforestry residues and the way to use them follows the same principles. The main aim of the present research is to estimate, through MODIS satellite images processing and classification, the availability of forest biomass and to identify potential places for thermoelectric power plants installation. The work was derived in of geographic information systems and remote sensing environment. The MODIS images made it possible to calculate the NDVI vegetation index and estimate the existing biomass using forms previously presented by other authors. Through cartographic algebra techniques, they were introduced conditioning factors for the power plants installation, such as the terrain morphology, the proximity to the road network and the proximity to nature reserves. The achieved results shown that Angola has a potential in forestry biomass that allows the installation of up to 17 plants of 11 GWh-1, 12 of which are located close to the current high voltage electrical network or in a situation of direct connection to the network. Of these 12, 4 are close to actual hydroelectric power plants, so they can work in addition to production. The results also shown that the farms dedicated to forestry production are located close to the power plants buffer zones as well the railway network. Thus, the residues of forest exploitation, that these farms generate, can be marketed as fuel for these power plants. The farms dedicated to agricultural production are also located close to the potential plants, so they can use the energy produced and sell their vegetable residues as fuel.

Keywords

Angola, forest biomass, alternative energies, GIS, satellite images

Referências

Agência Portuguesa do Ambiente. (2011). Atlas digital do ambiente. Recuperado em 21 de maio de 2021, de https://sniamb.apambiente.pt/

Aranha, J. T., Viana, H. F., & Rodrigues, R. (2008, abril 6-9). Vegetation classification and quantification by satellite image processing. A case study in north Portugal. In Bioenergy: Challenges and Opportunities. International Conference and Exhibition on Bioenergy (pp. 1-8). Guimarães: Universidade do Minho.

Aranha, J., Enes, T., Calvão, A., & Viana, H. (2020). Shrub biomass estimates in former burnt areas using sentinel 2 images processing and classification. Forests, 11(5), 555.

Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64(3), 234-253.

Associação de Energias Renováveis. (2007). Energias renováveis em Portugal. Recuperado em 21 de maio de 2021, de https://www.apren.pt/

Baccini, A., Laporte, N., Goetz, S. J., Sun, M., & Dong, H. (2008). A first map of Tropical Africa’s above-ground biomass derived from satellite imagery. Environmental Research Letters, 3(4), 45011-45019.

Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1), 1-28.

Botequim, B., Zubizarreta-Gerendiain, A., Garcia-Gonzalo, J., Silva, A., Marques, S., Fernandes, P. M., Pereira, J. M., & Tomé, M. (2015). A model of shrub biomass accumulation as a tool to support management of portuguese forests. iForest - Biogeosciences and Forestry, 8, 114-125.

Breeze, P. (2004). The future of global biomass power generation. The technology, economics and impact of biomass power generation. Eagan: Reuters Business Insights Ltd.

Chen, W., Zhao, J., Cao, C., & Tian, H. (2018). Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Global Ecology and Conservation, 16, e00479.

Chirici, G., Barbati, A., & Maselli, F. (2007). Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data. Forest Ecology and Management, 246, 285-295.

Cohen, W. B., Maiersperger, T. K., Spies, T. A., & Oetter, D. R. (2001). Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. International Journal of Remote Sensing, 22(12), 2279-2310.

Cosic, B., Stanic, Z., & Duic, N. (2011). Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: case study Croatia. Biomass and Bioenergy, 36(4), 2017-2028.

Deng, S., Shi, Y., Jin, Y., & Wang, L. (2011). A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: a case study. Energy Procedia, 5, 1535-1545.

Enes, T., Aranha, J., Fonseca, T., Matos, C., Barros, A., & Lousada, J. (2019a). Residual agroforestry biomass: thermochemical properties. Forests, 10(12), 1072.

Enes, T., Aranha, J., Fonseca, T., Lopes, D., Alves, A., & Lousada, J. (2019b). Thermal properties of residual agroforestry biomass of northern Portugal. Energies, 12(8), 1418.

Enes, T., Lousada, J., Fonseca, T., Viana, H., Calvão, A., & Aranha, J. (2020). Large scale shrub biomass estimates for multiple purposes. Life, 10(4), 33.

Faaij, A. P. (2006). Bio-energy in Europe: changing technology choices. Energy Policy, 34(3), 322-342. http://dx.doi.org/10.1016/j.enpol.2004.03.026.

Fernandes, U., & Costa, M. (2010). Potential of biomass residues for energy production and utilization in a region of Portugal. Biomass and Bioenergy, 34(5), 661-666.

Filella, I., Peñuelas, J., Llorens, L., & Estiarte, M. (2004). Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment, 90(3), 308-318.

Grupo Portucel Soporcel. (2007, julho 3). Grupo Portucel Soporcel assina protocolo de colaboração de recolha e tratamento de biomassa no distrito de Aveiro. Recuperado em 21 de maio de 2021, de http://www.thenavigatorcompany.com/var/ezdemo_site/storage/original/application/72f4de6a28b96a4e9a9930cb3014ebdc.pdf

Gustavsson, L., Holmberg, J., Dornburg, V., Sathre, R., Eggers, T., Mahapatra, K., & Marland, G. (2007). Using biomass for climate change mitigation and oil use reduction. Energy Policy, 35(11), 5671-5691.

Huete, A. R. (1988). A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309.

Huete, A. R., & Justice, C. (1999). MODIS vegetation index (MOD13) algorithm theoretical basis document (version 3). Recuperado em 21 de maio de 2021, de https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf

Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for MODIS-EOS. Remote Sensing of Environment, 59(3), 440-451.

Huete, A., Didana, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213.

Kelly, N. M. (2001). Changes to the landscape pattern of coastal North Carolina wetlands under the Clean Water Act, 1984-1992. Landscape Ecology, 16(1), 3-16.

Kiš, D., Sučić, B., Guberac, V., Voća, N., Rozman, V., & Šumanovac, L. (2009). Soybean biomass as a renewable energy resource. Agriculturae Conspectus Scientificus, 74(3), 201-203.

Liu, S., Cheng, F., Dong, S., Zhao, H., Hou, X., & Wu, X. (2017). Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Scientific Reports, 7, 1-10.

Lopes, D. M., Aranha, J. T., Walford, N., O’Brien, J., & Lucas, N. (2009). Accuracy of remote sensing data versus other sources of information for estimating Net Primary Production in Eucalyptus globulus and Pinus pinaster ecosystems in Portugal. Canadian Journal of Remote Sensing, 35(1), 37-53.

LP DAAC. (2021). Recuperado em 5 de maio de 2021, de http://lpdaac.usgs.gov

Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation: review article. International Journal of Remote Sensing, 27(7), 1297-1328.

Mateos, E., & González, J. (2010). Biomass utilisation in energy process. Renewable Energy & Power Quality Journal, 1(8), 1514-1518.

Muukkonen, P., & Heiskanen, J. (2005). Estimating biomass for boreal forest using ASTER satellite data combined with standwise forest inventory data. Remote Sensing of Environment, 99, 434-447.

NASA. (2021). Recuperado em 5 de maio de 2021, de http://reverb.echo.nasa.gov

Nguyen, H. K., & Nguyen, B. N. (2016). Mapping biomass and carbon stock of forest by remote sensing and GIS technology at Bach Ma National Park, Thua Thien Hue province. Journal of Vietnamese Environment, 8(2), 80-87.

Norovsuren, B., Tseveen, B., Batomunkuev, V., & Renchin, T. (2019). Estimation for forest biomass and coverage using Satellite data in small scale area, Mongolia. IOP Conference Series: Earth and Environmental Science, 320, 012019.

Peichl, M., & Arain, M. A. (2006). Above and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140(1-4), 51-63.

Portal das Energias Renováveis. (2019). Recuperado em 5 de maio de 2021, de https://www.energiasrenovaveis.com/Area.asp?ID_area=2

Portugal, A., Teixeira, A., Anastácio, D., Ribeiro, D., Salinas, F., Louro, G., Marques, H., & Gardete, J. (2003). Princípios de boas práticas florestais. Recuperado em 5 de maio de 2021, de https://www.icnf.pt/api/file/doc/e550b62b6b44f397

Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., Ribeiro, L. M., Viegas, D. X., Moreno, J. M., & Fernández, H. (2007). Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341-348.

Rouse Junior, J. W., Haas, R. H., Scheel, J. A., & Deering, D. W. (1973, dezembro 10-14). Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium (pp. 309-317). Oak Ridge: Scientific and Technical Information Office/National Aeronautics and Space Administration.

Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data: an investigation on possible approaches for natural forest. Journal of Biosciences, 21(4), 535-561.

Scally, R. (2006). GIS for environmental management. São José dos Campos: ESRI Press.

Suganuma, H., Abe, Y., Taniguchi, M., Tanouchi, H., Utsugi, H., Kojima, T., & Yamada, K. (2006). Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. Forest Ecology and Management, 222(1), 75-87.

USGS. (2021. GloVis. Recuperado em 5 de maio de 2021, de https://glovis.usgs.gov/app

Viana, H., & Ferreira, J. (2005). Wood energy resources. Module 5. A self-study educational e-learning module of Wood Energy Supply System Training (WESST) project. Viseu: Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu (ESAV) - Millenium.

Viana, H., Aranha, J., Lopes, D., & Cohen, W. B. (2012). Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecological Modelling, 226(10), 22-35.

Viana, H., Cohen, W. B., Lopes, D., & Aranha, J. (2010). Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood fired power plants in Portugal. Applied Energy, 87(8), 2551-2560.

Viana, H., Lopes, D., & Aranha, J. (2009). Predição de biomassa arbustiva lenhosa empregando dados de inventário e o índice de diferença normalizada extraído em imagens Landsat 5 TM. Millenium - Journal of Education, Technologies, and Health, 37, 1-7.

Voivontas, D., Assimacopoulos, D., & Koukios, E. G. (2001). Assessment of biomass potential for power production: a GIS based method. Biomass and Bioenergy, 20, 101-112.

Wijaya, A., Kusnadi, S., Gloaguen, R., & Heilmeier, H. (2010). Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. Journal of Forestry Research, 21(1), 1-12.

Wulder, M. A., White, J. C., Fournier, R. A., Luther, J. E., & Magnussen, S. (2008). Spatially explicit large area biomass estimation: Three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors, 8(1), 529-560.

Xiao, J., & Moody, A. (2005). A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, 98(2-3), 237-250.

Yang, X. (2007). Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. International Journal of Remote Sensing, 28(2), 353-370.

Zheng, G., Chen, J. M., Tian, Q. J., Jub, W. M., & Xia, X. Q. (2007). Combining remote sensing imagery and forest age inventory for biomass mapping. Journal of Environmental Management, 85(3), 616-623.
 


Submetido em:
20/05/2023

Aceito em:
20/10/2023

6531440fa9539507e976a3b4 resr Articles
Links & Downloads

resr

Share this page
Page Sections