Revista de Economia e Sociologia Rural
http://www.resr.periodikos.com.br/article/doi/10.1590/1806-9479.2025.293824
Revista de Economia e Sociologia Rural
ARTIGO ORIGINAL

Transmissão de risco e volatilidade no setor pecuário do Paraná: uma aplicação do modelo TVP-VAR

Transmission of risk and volatility in the Paraná livestock market: an application of the TVP-VAR model

Tomás Fernandes Torre; Julyerme Matheus Tonin; Carlos Oñate-Paredes

Downloads: 0
Views: 14

Resumo

Este estudo analisa a transmissão de risco e volatilidade no mercado pecuário do Paraná, Brasil, usando o modelo TVP-VAR, no período de janeiro de 1995 a março de 2024. Examina conectividade, spillovers de volatilidade e assimetria, com foco na produção de carne bovina e nas interações entre commodities pecuárias e grãos. Evidências mostram que crises internacionais ampliam a transferência de volatilidade, afetando mais os mercados internos. Ao compreender essas dinâmicas, o estudo contribui para o desenvolvimento de estratégias mais avançadas de estabilidade de preços e gestão de riscos no setor pecuário, com implicações para as políticas econômicas regionais e nacionais.

Palavras-chave

transmissão de risco, volatilidade, mercado de pecuária, modelo TVP-VAR, Paraná

Abstract

Abstract: This study analyzes the transmission of risk and volatility in the cattle market in Paraná, Brazil, using the TVP-VAR model, from January 1995 to March 2024. It examines connectivity, volatility spillovers and asymmetry, focusing on beef production and interactions between livestock commodities and grains. Evidence shows that international crises amplify the transfer of volatility, affecting domestic markets more. By understanding these dynamics, the study contributes to the development of more advanced price stability and risk management strategies in the livestock sector, with implications for regional and national economic policies.

Keywords

risk transmission, volatility, livestock market, TVP-VAR model, Paraná

References

Adekoya, O. B., Akinseye, A. B., Antonakakis, N., Chatziantoniou, I., Gabauer, D., & Oliyide, J. (2022). Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies. Resources Policy, 78, e102877. http://doi.org/10.1016/j.resourpol.2022.102877

Anand, K., & Mishra, A. K. (2024). Asymmetric TVP-VAR connectedness between highly traded commodities and hedging strategies: Evidence from major contagions. Borsa Istanbul Review, 24(6), 1248-1262. http://doi.org/10.1016/j.bir.2024.07.009

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. http://doi.org/10.3390/jrfm13040084

Barros, G. S. A. C., Carrara, A. F., Silva, A. F., & Castro, N. R. (2021). A inflação dos alimentos em 2020 e seus gatilhos. Centro de Estudos Avançados em Economia Aplicada, 1(2), 1-16. http://dx.doi.org/10.13140/RG.2.2.30237.84964

Cagli, E. C., Mandaci, P. E., & Taskin, D. (2023). The volatility connectedness between agricultural commodity and agri businesses: Evidence from time-varying extended joint approach. Finance Research Letters, 52, e103555. http://doi.org/10.1016/j.frl.2022.103555

Capitani, D. H. D., & Gaio, L. E. (2023). Volatility transmissionin agricultural markets: Evidence from the Russia-Ukraine conflict. International Journal of Food and Agricultural Economics, 11(2), 65-82. http://dx.doi.org/10.22004/ag.econ.334707

Capitani, D. H. D., & Gaio, L. E. (2025). Dynamic connectedness and volatility spillover in the Brazilian agricultural market in the context of the Covid-19 pandemic. Estudos Econômicos, 54, e53575446. http://doi.org/10.1590/1980-53575446dclg

Chatziantoniou, I., Gabauer, D., & Gupta, R. (2021). Integration and risk transmission in the market for crude oil: A time-varying parameter frequency connectedness approach (Working Paper Series, no. 2021-47). Pretória: University of Pretoria, Department of Economics Working Paper Series. Recuperado em 20 de setembro de 2024, de https://www.up.ac.za/media/shared/61/WP/wp_2021_47.zp209709.pdf

Coase, R. H. (1960). The problem of Social Cost. The Journal of Law & Economics, 3, 44. http://doi.org/10.1086/466560

Cunado, J., Gabauer, D., & Gupta, R. (2024). Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach. Financial Innovation, 10(1), 12. http://doi.org/10.1186/s40854-023-00554-7

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. http://doi.org/10.1016/j.ijforecast.2011.02.006

Diebold, F. X., & Yilmaz, K. (2015). Financial and macroeconomic connectedness: a network approach to measurement and monitoring (pp. 1-265). New York: University of Oxford, Oxford University Press.

Elliott, G., Rothenberg, T. J., & Stock, J. H. 1992. Efficient tests for an autoregressive unit root. NBER Technical Working Paper Series, (130), 1-36. https://doi.org/10.3386/t0130

Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The Journal of Finance, 57(5), 2223-2261. http://doi.org/10.1111/0022-1082.00494

Furuoka, F., Yaya, O. S., Ling, P. K., Al-Faryan, M. A. S., & Islam, M. N. (2023). Transmission of risks between energy and agricultural commodities: Frequency time-varying VAR, asymmetry and portfolio management. Resources Policy, 81, e103339. http://doi.org/10.1016/j.resourpol.2023.103339

Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system. Journal of Multinational Financial Management, 60(1), 1-16. https://doi.org/10.1016/j.mulfin.2021.100680

Koop, G., & Korobilis, D. (2013). Large time-varying parameter VARs. Journal of Econometrics, 177(2), 185-198. http://doi.org/10.1016/j.jeconom.2013.04.007

Mattos, L. B. D., Lima, J. E. D., & Lirio, V. S. (2009). Integração espacial de mercados na presença de custos de transação: um estudo para o mercado de boi gordo em Minas Gerais e São Paulo. Revista de Economia e Sociologia Rural, 47(1), 249-274. http://doi.org/10.1590/S0103-20032009000100009

McNew, K. (1996). Spatial market integration: Definition, theory, and evidence. Agricultural and Resource Economics Review, 25(1), 1-11. http://doi.org/10.1017/S1068280500000010

McNew, K., & Fackler, P. L. (1997). Testing market equilibrium: Is cointegration informative? Journal of Agricultural and Resource Economics, 22(2), 191-207. Recuperado em 20 de setembro de 2024, de https://www.jstor.org/stable/40986942

Mishra, A. K., Panda, P., Pradhan, S. K., Panda, A. K., & Smark, C. (2024). Uncertainties and dynamic connectedness among sectors: a case of the USA, India, France, Germany and Russia. Australasian Accounting, Business and Finance Journal, 18(3), 168-201. http://dx.doi.org/10.14453/aabfj.v18i3.10

Owusu Junior, P., Agyei, S. K., Adam, A. M., & Bossman, A. (2022). Time-frequency connectedness between food commodities: New implications for portfolio diversification. Environmental Challenges, 9, e100623. http://doi.org/10.1016/j.envc.2022.100623

Polat, O., Başar, B. D., Torun, E., & Ekşi, İ. H. (2023). Dynamic interlinkages between geopolitical stress and agricultural commodity market: Novel findings in the wake of the Russian Ukrainian conflict. Borsa Istanbul Review, 23, S74-S83. http://doi.org/10.1016/j.bir.2023.05.007

Polat, O., Ertuğrul, H. M., Sakarya, B., & Akgül, A. (2024). TVP-VAR based time and frequency domain food & energy commodities connectedness an analysis for financial/geopolitical turmoil episodes. Applied Energy, 357, e122487. http://doi.org/10.1016/j.apenergy.2023.122487

Qin, Y., Chen, J., & Dong, X. (2021). Oil prices, policy uncertainty and travel and leisure stocks in China. Energy Economics, 96, e105112. http://doi.org/10.1016/j.eneco.2021.105112

Umar, Z., Jareño, F., & Escribano, A. (2021). Agricultural commodity markets and oil prices: an analysis of the dynamic return and volatility connectedness. Resources Policy, 73, e102147. http://doi.org/10.1016/j.resourpol.2021.102147

Urso, F. S. P. (2007) A cadeia da carne bovina no Brasil: uma análise de poder de mercado e teoria da informação (Tese de doutorado). Escola de Economia de São Paulo, Fundação Getulio Vargas, São Paulo.

Vo, D. H., & Tran, M. P. B. (2024). Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: Does uncertainty from the Russo-Ukrainian conflict matter? Technological Forecasting and Social Change, 208, e123723. http://doi.org/10.1016/j.techfore.2024.123723

Wu, Y., Ren, W., Wan, J., & Liu, X. (2023). Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict. Finance Research Letters, 55, e103866. http://doi.org/10.1016/j.frl.2023.103866

Yang, C., Niu, Z., & Gao, W. (2022). The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP-VAR-SV approach. Resources Policy, 76, e102600. http://doi.org/10.1016/j.resourpol.2022.102600

Zeng, H., Lu, R., & Ahmed, A. D. (2023). Return connectedness and multiscale spillovers across clean energy indices and grain commodity markets around COVID-19 crisis. Journal of Environmental Management, 340, 117912. http://doi.org/10.1016/j.jenvman.2023.117912

Zhao, J. (2023). Time-varying impact of geopolitical risk on natural resources prices: evidence from the hybrid TVP-VAR model with large system. Resources Policy, 82, 103467. http://doi.org/10.1016/j.resourpol.2023.103467

Zhu, H., Xia, X., Hau, L., Zeng, T., & Deng, X. (2024). Time-frequency higher-order moment Co-movement and connectedness between Chinese stock and commodity markets. International Review of Economics & Finance, 96, 103580. http://doi.org/10.1016/j.iref.2024.103580
 


Submitted date:
01/31/2025

Accepted date:
05/07/2025

6865853ea9539570472256c4 resr Articles
Links & Downloads

resr

Share this page
Page Sections